Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36012110

RESUMO

Ventricular arrhythmias associated with myocardial infarction (MI) have a significant impact on mortality in patients following heart attack. Therefore, targeted reduction of arrhythmia represents a therapeutic approach for the prevention and treatment of severe events after infarction. Recent research transplanting mesenchymal stem cells (MSC) showed their potential in MI therapy. Our study aimed to investigate the effects of MSC injection on post-infarction arrhythmia. We used our murine double infarction model, which we previously established, to more closely mimic the clinical situation and intramyocardially injected hypoxic pre-conditioned murine MSC to the infarction border. Thereafter, various types of arrhythmias were recorded and analyzed. We observed a homogenous distribution of all types of arrhythmias after the first infarction, without any significant differences between the groups. Yet, MSC therapy after double infarction led to a highly significant reduction in simple and complex arrhythmias. Moreover, RNA-sequencing of samples from stem cell treated mice after re-infarction demonstrated a significant decline in most arrhythmias with reduced inflammatory pathways. Additionally, following stem-cell therapy we found numerous highly expressed genes to be either linked to lowering the risk of heart failure, cardiomyopathy or sudden cardiac death. Moreover, genes known to be associated with arrhythmogenesis and key mutations underlying arrhythmias were downregulated. In summary, our stem-cell therapy led to a reduction in cardiac arrhythmias after MI and showed a downregulation of already established inflammatory pathways. Furthermore, our study reveals gene regulation pathways that have a potentially direct influence on arrhythmogenesis after myocardial infarction.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Infarto do Miocárdio , Animais , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/terapia , Modelos Animais de Doenças , Células-Tronco Mesenquimais/metabolismo , Camundongos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/terapia
2.
Cells ; 8(12)2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31757119

RESUMO

BACKGROUND: Ventricular arrhythmias (VA) are a common cause of sudden death after myocardial infarction (MI). Therefore, developing new therapeutic methods for the prevention and treatment of VA is of prime importance. METHODS: Human bone marrow derived CD271+ mesenchymal stem cells (MSC) were tested for their antiarrhythmic effect. This was done through the development of a novel mouse model using an immunocompromised Rag2-/- γc-/- mouse strain subjected to myocardial "infarction-reinfarction". The mice underwent a first ischemia-reperfusion through the left anterior descending (LAD) artery closure for 45 minutes with a subsequent second permanent LAD ligation after seven days from the first infarct. RESULTS: This mouse model induced various types of VA detected with continuous electrocardiogram (ECG) monitoring via implanted telemetry device. The immediate intramyocardial delivery of CD271+ MSC after the first MI significantly reduced VA induced after the second MI. CONCLUSIONS: In addition to the clinical relevance, more closely reflecting patients who suffer from severe ischemic heart disease and related arrhythmias, our new mouse model bearing reinfarction warrants the time required for stem cell engraftment and for the first time enables us to analyze and verify significant antiarrhythmic effects of human CD271+ stem cells in vivo.


Assuntos
Adapaleno/imunologia , Antiarrítmicos/uso terapêutico , Modelos Animais de Doenças , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Infarto do Miocárdio/terapia , Adapaleno/análise , Animais , Feminino , Humanos , Imunofenotipagem , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...